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The problem of determining the motion of a vortex under the surface of a 

liquid, under the influence of gravity, for Froude numbers near unity 

(but larger than unity), may have two solutions, as has been remarked by 

Moiseev [l I. One of these solutions corresponds to a flow which tends to 
plane-parallel flow when the intensity of the vortex tends towards zero. 

The existence of this solution was shown by Ter-Krikorov [ 2 1. The 
existence of a second solution is shown below. It corresponds to a flow 

whose free surface tends to a solitary wave form when the intensity of 

the vortex tends toward zero. 

In the first two sections, an approximate method of solution of the 
problem is expounded. This approximate solution serves to clarify some 
particularities of the flow. At the same time, it is of use in the actual 
construction of the exact solution. 

1. Formulation of the problem. Consider the motion of a vortex 

of intensity y, moving with constant speed c such that the nondimensional 

speed, or Froude number, F2 = c2/gH is near unity, but is larger than 
unity. The vortex moves in a canal of finite depth H under the surface of 
an ideal fluid which is under the influence of gravity. We will suppose 

that far in front of and far behind the vortex the fluid is at rest and 

that the free surface is then parallel to the bottom cf the channel. E$ 

reversing the motion we shall consider the flow of fluid past the vortex. 

Without loss of generality, we shall suppose that both the speed of 

the vortex and the depth of the channel are equal to unity. 

'lhe system of coordinates will be chosen as is shown in Fig. 1. The 

vortex occupies the point A(0, a). letting UJ = w(z) denote the complex 
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potential, the problem reduces to the determination of the function w(z) 
which is analytic in the domain D, has a logarithmic singularity at the 
point z = ia, and satisfies the following boundary conditions: 

and the asymptotic conditions 

1imY (z) = 1, lim ($) = 1 for Izf-m U-2) 

where Y = Y(x) is the equation of the Q priori unknown surface of the 
fluid, and 

w (2) = 9 (2, # + q (% Y) (2 ==: z + iy) 

Let us introduce the parametric domain D'., the strip of unit width 
0 < q < 1. Let us map the domain D in the z plane into the strip D'- in 
the 4 plane by means of the anaIytie function J = 6(x, y) + ink, y) in 
such a way that the points of infinity correspond, and so that the point 
A(O, Q) in the domain D corresponds to the point A'XO, 0) in the domain 
D', 'Ihe intensity of the vortex is not affected by the conformal trans- 
formation. 

Since the curves (L) and (S) are streamlines of the flow in D, it 
follows that the curves (L’J and (S’3 are streamlines in D', Thus, in the 
5 plane our problem reduces to that of determining the flow past a vortex 
in a canal of constant width. Hence the complex potential w(c) may be 
written down explicitfy: 

(1.3) 

where 

Imw(t)=O for q=o, Imw(C)=* for q=i (1.4) 

Inserting ~~(i)/~ 5 in (1.11, we obtain 
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Clearly, in the present problem we have; const = l/2 + V. 

In order that the speed on the free surface never vanish, it is 
necessary to require that 

7 < 2W/& (1.6) 
The condition ( 1.2) now becomes 

Since the axis y = 0 corresponds 
axis 7j = 0, we have 

Y (4, 0) = 0 

to the Fig. 2. 

(I.81 
However, the problem in question does not possess a unique solution. 

Ter-Krikorov [ 2 ] constructed an exact solution of this problem, which, 
as y + 0, tends to the plane parallel flow. 

It may be expected that there exist solutions which, as y -) 0, tend to 
a nontrivial solution of the homogeneous problem. The possibility of this 
nonuniqueness has been pointed out by Moiseev C 11 . Ihe unique solution 
of this problem for y = 0 and the given asymptotic conditions at infinity, 
is a solitary wave. 

Consequently, let us pose the problem of determining a solution which, 
as y + 0, tends to the solution of the homogeneous problem which charac- 
terizes a solitary wave. Since a solitary wave exists for Froude numbers 
near unity, the quantity 1- w must be supposed to be small; correspond- 
ingly, the quantity y must also be supposed small, in the general case, 
of an order not less than that of 1 - V. 

2. Approximate solution of the problem. Let us suppose that 
the equation of the free surface is such that the function y = yf[) 
varies slightly and that its curvature is small. Then, following the plan 
of the solution in E 3 1 , let us replace d(/dz in (1.5) by its approximate 
expression 

For u = y(t) - 1 we obtain the equation 

-!- x2 (8 {;- + 67,&(E) -I- 97’f?(E) i- * . I- E [3 + 671~ (Q m:-. . .I) - (24 

- l37ll(O I- ; 7w (5) -I- * . . I - $ zt’2 (5) - + 24 (E) u’2 (E) - . , . = 0 
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where 

c=l-v, fl (5) = $ & ,;iyfos np 

'Ihe solution of equation (2.2) may be supposed to be of the form 

u(c) = u,(E) + u,([), where ua = u,(4) depends only on 6, i.e. is a solu- 

tion of Equation (2.2) for y = 0. 'Ihe functions u,(c) and u,(e) will be 

sought in the form 

uo(5) = $j. +Jn. Ul(5) = i rnuln (2.3) 
n=1 *=I 

where it is required that 

uoll (6) = 0 for I E I - 00, ‘uln (5) = 0 for I E I+ 00 (2.4) 

Substituting from (2.3) into (2.2) and equating to zero the coeffi- 

cients of c and of y of u,.,~ and of u,,(t) we obtain the equations 

%l” (51) - 3% (b) + '$ ma ,(h) = 0 (2.5) 

%lm (5) - 3%1(E) + 9UOl (El) %)1(E) = @ (6, fl, %l) (2.6) 

where 

@ (5, fl, %a) = 3fl(5) 11 + UOI (01, &=1/85 (2.7) 

2 
so that Equation (2.6) holds up to order E . 

The solution of (2.5) satisfying (2.4) has the form 

3 

“I= cha v/9/48(5-- Eo) (2.8) 

In order to integrate (2.6), it is necessary 

Y tion 

to know two solutions of the homogeneous equa- 

Fig. 3. 
v*(5)-33EV + 9UOlV = 0 (2.9) 

lhese two solutions are 

v1 = UOl’, 
s 
dE 

:va =.v1 3 

The Wronskian of these solutions is 

A-= vlvra -v’pa= 1 

Hence the general solution of (2.6) is given by 
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E 
1 

u11= - 211 A @,(5* fl*. %I) v&E + CIVI + x ~2 @((5* fl, uod GE + wz (2.10) 

Since v2 -f m as ItI+ 00, in order that the function ull (51 be bounded 

in absolute value at infinity we must have cq = 0 and 

(2.12) 

Since the function fl([) is an even function, and the functions 

f,(5), %J,(O, u,‘~(() are monotonic with respect to 5, the function has 
the general appearance of the graph in Fig. 3. 

From Fig. 3 it follows that I’ (5,) = 0 only for 6, = 0. ‘lhis leads us 

to assume that the peak of the wave lies above the vortex. 

Sincey(tl= l+t~,,~+~~u,,~+ . . . +y(ull+ . ..)+ . . . . asy-+O the 

wave tends to a solitary wave, which is a solution of the homogeneous 

problem, which is characterized by the terms 

Yl (5) = I+ euo1 UOl = (2.13) 

In what follows, starting from the precise formulation of the problem, 
we shall prove the following theorem: 

when the speed v = es3’ 
2 

< 1 is near unity (i.e. a is near zero), 

then for a vortex of small intensity y = r/c!3 (where y < a) there exists 
a solitary wave solution. 

3. Transformation of the fundamental boundary condition. 
For the further development of the exact problem and for the simplifica- 
tion of the boundary condition (1.5) we introduce the auxiliary analytic 
function 

Let us substitute (3.1) into (1.5) and differentiate the resulting 
equation with respect to 5. Besides, let us observe that 

3 = Imei~,K) - e-T si* fj - 
35 

, 
ah a0 -_ at;= aq 

Final ly , instead of (1.5) we obtain the following equation: 
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Let us set 

v =L &--@’ (v < 1)s T = h -/- 2, @(Cl = fi (4, 7) + PC 6% q) (3.3) 

Condition (3.2) is then replaced by the following: 

a0 
ify= 

e-3+ sin 0 + f' (e) 

f=(E) f (5‘1 
(3.4) 

From (3.1) it follows that 

r: 

s = ia + eiwlQ& or 
s 

z=i(a,- B)+itr[ eh(O - 11 dt 

iP iP 

where a and /3 are the heights of the submerged vortices in the physical 

and in the parametric domains D and B' respectively, From the last equa- 
tion it follows that 

y=(a- p) + q + Im [ [eiwl(f) - 11 dt 

Sincey-+ 1, and?+ las/t/+M,weobtain 
-oO+i 

Condition (1.8) for oC[>, and also condition 

become 

(3.5) 

(1.7) in view of (3.1), 

limw,(C) = 0 as IS!-+= (3.6) 

Consequently, from (3.3): 

‘G-+u2 88 IE;I-+- (3.7) 

Ihe exact problem, therefore, may be formulated thus: given a and y, 

determine the function o(C) = C? + it which is analytic in the strip 

o< 9 < 1, is continuous alongq = 0 and 7 = 1, and satisfies the bound- 

ary conditions (3.4), (3.6) and ( 3,7), where /3 is the functional occur- 

ring in (3,s). 

As was remarked in Section 1, the problem posed possesses a nonunique 
solution which tends, as y + 0, to a nontrivial solution of the homogen- 

eous problem, characterizing a solitary wave. 

We will suppose that 0 < p < 1 and v < 1. 

'Ihe condition 0 < p < 1 means that the vortex does not lie on the free 

surface, and the condition v < 1 means that the vortex moves at a super- 

critical spead, which is near the critical speed. 

4. Green's function. ?he fundamental boundary condition (3.4) may 
be rewritten as follows 
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In order to reduce the problem to a nonlinear integral equation, we 
need the Green’s function C(c, [‘.) for the strip 0 < 9 < 1, satisfying 
the boundary conditions 

aH 
q-H=O; for -q=1 H=O for ?j=o H = ReG(6, t’) 

Such a Green’s function G(<, 5’) was first obtained by John [ 6 1 t and 
was employed by Friedrichs and liyers I3 I. 

Lemma 4.1. Suppose that c is a contour consisting of the real axis in 
the 5 plane, together with a loop around the origin of coordinates in the 
negative half of the plane. 

‘Ihen the Green’s function G(c, c’) may be represented as follows 

“Ihe Green’s function may be continued to the remainder 
0<‘1<1,0<;‘< 1 in such a way that conditions (4.2) 

Lemma 4.2. ‘Ihe Green’s function G(c, 5’1 may, for ‘I’.= 
sented in the form of a sum 

where 

of the domain 
hold. 

1, be repre- 

(4.4) 

1 for E--_>O 
s = sign (5 - F’) = (4.6) 

-1 for 4-eE’<o 

and, besides 

(4.7) 

Lemma 4.3. Suppose that F(0, 7, a, y, /3) = F(t) is continuous on 
- M < 5: < + 00 and that the integral 

exists; then the function 



Motion of a vortex 705 

-i--J 

Co (e) = 0 + i-7 = s G (f, t’) F(Q, 2, a, -(, B) dS (4.9) 
-00 

is an analytic function on the open strip 0 < v < 1, is continuous on the 
closed strip 0 < 7 < 1, and 8 satisfies the boundary conditions (3.6) and 
(4.1). in the sense that 

lim (0,’ - 0) = F (t) as r-+4, ri<1; 0=0 for q=o 

5. Reduction of the problem to a system of nonlinear iute- 

gral equations. In order to obtain an equivalent system of nonlinear 
integral equations, let us introduce the operators 

-i-w 
GF= 

!+ 
G (E, E’) F (E’) dS’, G(q) F = TG (C, E’ + i) F (5’) dE (5.1) 

--a3 

‘Ihe constructed solution of the nonlinear integral equation 

8 + ir = GF(8, z, a, 7, p) (5.2) 

for the functions 0 and r on the boundary 11 = 1, furnishes the solution 
of the problem under consideration. Indeed, according to Lemma 4.3 the 
solution 8 + ir of (5.2) is an analytic function U(C), whose boundary 
values satisfy the first condition (3.6) and condition (4.1). 

Let us study the asymptotic character of the functions defined by 
Formula (5.1), relative to the second condition (3.6). 

According to Lemna 4.2 we have 

G (C, 5’ + i) = G, (5, E + i) + GI (e;, 5’ + il (5.3) 

where 

If F(J) is such that the integral (4.8) exists, then, according to 
Learna 4.2, G,(q)F-, 0 as 161 + m. Ekt G,(<, e’ + i) is the square of a 
polynomial in 5 and c’, so that the convergence to zero of G,(n IF as 
15 1 + DO is not obvious, unless F(c) is required to satisfy some addi- 
tional restrictions. Ekt, since from (4.5) 

Go (C, E’ -+- i) = $ is (E - E’)2 _i- $ r,s (5 - E’) + + is (a q2 - $) 

it follows that 

(5.4) 

G, (r) F = - i&Fr, + ii&,F+ i ($ $ - $) i&F (5.5) 
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(5.6) 

Lemma 5.1. Suppose thatFt0 is an even function, continuous and de- 

creasing at infinity in such a way that the integral (4.8) exists. If, 

besides, the integral (5.8) equals zero, then G,,(J~)F-P 0 as ]tJ/ + M and 

'lhe proof is immediate. Since 

(5.7) 

(5.8) 

from (5.6) we readily obtain (5.7). 

In view of this we shall suppose that the wave is synrnetric, i.e. that 

T is a even function of C$ and that 8 is an odd function of 5, and then 

F(J) = FM, f, a, y, /3> will be an odd function of c$. 

Thus, if 6(e) and r (f> satisfy (5.8) and (5.21, then by Lemnas 4.3 

and 5.1 the function w([J will satisfy the second condition of (3.6); 

and, consequently, will be a solution of the problem under consideration. 

lbe remainder of this paper will be devoted to the determination of the 

functions B and r from equation (5.2). 

For convenience, we shall separate the operator G,F into real and 

imaginary parts: 

G,F =(T, -t_ iT,) F (5.9) 

Then the integral equation (5.2), on account of (5.51, (5.7) and 

(5.91, may be written as follows 
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(5.10) 

8 = [--621 + T,] F(f', ~7 a, 7, p), 'c = IQ,- G + T,lF('% ~,a, 7, B) + a'" 

where @ is the functional appearing in (3.5), and 
(5.11) 

+a 

s, 
SF@, ~,a, 7,p)dE = 0; e--+0 as [El-CO, T3a2 as IEI-= 

Suppose that the function k = k(e) is odd and such that 

+&k(E)oli = 1 
J 

--co 

Let us introduce the auxiliary function 

@ = @ (6.7, a, 7, P) = F(4T a, 7,P) - 

'lhen the equation 

$03 c 

k(E)+~EF(fJ , =, 6 74)4 (5.12) 
--CD 

is identically satisfied. 

I ( E@ 0, T, U, 7, PI = 0 
---a, 

(5.13) 

Instead of the system (5.10) we shall solve the modified system 

0 = [-fin, + T,I @ (ka, 7, p), 5 = ~2-k [a,- o2 + ~~1 CD (k47, P) 

6. Properties of the operators. Let us introduce the classes of 

continuous functions R, and R,, consisting of odd functions e(t) and even 

functions r (5‘) respectively, defined on the axis - 00 < zJ< + m, and 

such that 1 e2~O((> 1 and 1 e2cr (tf> 1 are bounded for 5 > 0 and consider the 
norms 

Let us denote by R the space of pairs u = i 8, rl of functions 0 and r, 

defined on the axis - m < 5‘~ + 00, with the norm 

We now prove a number of lemnas. 
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Lema 6.1. If Fff!JkG, , then Q,F&R,, Q2FER,, S1zFtiR,, and the 
following inequalities hold 

II QOP II < + II F I/* 

Pro0 f: Since 

we have 

From this, 11 nfj/ < 3/8 F. ?he last tw inequalities of (6.1) are 
proved in the same way. 

Lemma 6.2. If F(~k?R,, then T,FEf?, and TflER2 and the following in- 
equalities hold 

II TIP II < P ii F Ill II TaF II < q II F Ii 

As we shall see below, q > 0.9065. 

Proof: Let 

(q = con.&) (6.2) 

Using Euler’s formula and the oddness of F(e) it may be shown that 
J= J, + J,, where 

Putp=a- iX , consider the contour C,, in the A > 0 half plane, and 
let us estimate J, by deforming Cn around the poles of the integrand 

pmchpm--&pm=0 

Let us write J, as follows: 
I 

s ,W--iEi + ,-%(1-W M 
pchp-shp 

dp 
s 

e-i~~‘F (5’) dt’ 

c F; 

(6.5) 
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Estimating the inner integral in (6.5) we obtain 

‘Ihen, letting n + 00, it is easily seen that 

where 

,, Kl (I+ 5) (ch I$,, + sh P,) IlfP?T% 
R ml= -; P,,, sh P,,, 

zx- - - KI (P,. 4) x rLm2 (6.7) 

1 I-Pm 
Rm2= -- x ~ Kz (t+ 

h2 

Since am < Am < r(m + l/2), from (6.6) it f0110Ws that 

1+&t 1 
I 2x& I < II VI em” -qz-- vh, < II F II ene ’ + zt~$ E’az 

By addi tion, using (6.8) for all m, we obtain 

CO ccl 

(6.8) 

1 

2Sn 

27~ 2 IR,, I < 0.1929IIFI) e-", 2x 2 IR,, I< 0.1142(IFIJe-eS (6.9) 

m-1 m=l 

From (6.9) it follows that 

IIJlll< 0.3071 IIFII (6.10) 

Now let us estimate J,. ‘Ihe inner integral of J, may be estimated thus: 

Let us put 

?hen 

K(pm,.!j)= e--iw4 sin pE’F (E’)de’ 
0 
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From this 

Wit, since 7rm < Aa < n(m + l/Z), we obtain 

I Jzl <IIFIIe-2E 
cn 1 

2-C 
7.3 

ga -m-i-$) < 0.599UFjIe-24[i J21j< 0.5994//F 11 (6.11) 

m=l 

From inequalities (6.10) and (6.11) it follows that 

IlWIl<~II~k li>O.9065. or /I~~~I/<gll~lI, IT,FIl<qj(FIj (6.12) 

and the proof is complete. 

Now, (5.14), the f~d~ental system of integral equations, may be 

written in the form 

where 

Lemma 6.3. 'Ihe operator H defined by (6.13) transforms the space R 

into itself, and possesses, for finite a and y, and for arbitrary o=R, 

a Frechet differential. 'Ihe operator H is continuous with respect to o, 

a, y, & and the diff erential 6H is continuous with respect to o, a, 

y, /3, 6w, when these variables range over bounded domains or intervals, 

as the case may be. 

Proof: Suppose that u = (6, r) varies in an arbitrary fixed sphere 

MER, where y < 2.cotan(nB/2), and CI lies in a finite interval 1. 

Since the function F(c) is given by 

it is obvious that F(@z%, is an entire function of 8, T, a, y, p, which 
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is continuous in o, a, y, B under the restrictions placed on a and y; 

and that (F(5) 1 < c. 

Further, from (5.12) it is clear that cD(0, r , a, y, /3> is also bound- 

ed and uniformly continuous with respect to o, a, y, @; and that @ERr, 
i.e. 11@l1 < c for ocMM, where a, y, /3 are finite. 

From (6.13) and (6.14), together with Lenvnas 6.1 and 6.2, it follows 

that HER. 

In order to prove the continuity of H(o, a, y, p), let us notice that 

HI b’, a’, Y, P’) - HI (0, a, 7, p) = 
= (V - 0) + [fir - T,lW (f”, ~‘r a’, r’, B’) - 0 (‘3, 7, a, 7, p)> (‘3.15) 

Further, using Lemmas 4.1 and 4.2 we see that the norms of the first 

and second terms of (6.15) may be made small, provided that II 8’- 0 11 , 
IIT’- 7 ll , la’.- al t IY’-- rl , IS’-- BI are small, and hence H, is uni- 

formly continuous in all its variables. This assertion also holds for 

Hz. Putting 

we have that 

‘lhe proof that 6 H, and 6 H2 are uniformly continuous in o, a, y, /3, 

60 is similar, and the theorem is proved. 

7. Existence theorem. In order to prove the existence of the 
solution o = 0 + ir of the equation H(o, a, y, /3) = 0, which satisfies 

-too 

s 
EF (0, T, a, 7, p) dE = 0 (7.1) 

for y f 0, let us write 8 = 0, + 68, r = r. + 87, where 

8, = +;, 50 = a2 (1 - 3to), to = sch2 $ a( (7.2) 

is the approximate solution 8, r in the case of the solitary wave. 

‘lhen Equation (6.13) becomes 

If (Q,, -j- 'h,U, 7, p) = 0, or 6/1(to,, a, 7, p; 86)) =- 8; (7.3) 
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where 6W is the Frechet differential of the operator H, and 6c~R. 

Consider first the case y = 0. In this instance we have the problem 

of Friedrichs and Hyers. Putting [ = ut and carrying out the indicated 

operations in (7.3) fory = 0, we obtain 

Puty =Srl -Sol; - y'=S8, -apt; then Equation (7.5) becomes 

that is, F, is not an arbitrary element of&. Integrating (7.6) we 

obtain 

Besides, it is readily seen that the function g(t) satisfies 

foe 

s 
g(E)& = 0 

--00 

In [ 3 1 it is shown that Equation (7.7) has solutions in R, of the 
form 

Y=Wgl-cJNRl (7.8) 

uhereM[h]is a linear bounded operator. Let us write 

M [K] = ~1 (E), pq (6) = t-u1 (b a1 (01 
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Lemma 7.1. There exists a linear bounded operator from R to R such 
that, for each real c and each 6 J,C R : 

6% = N1 WI) - Vl (E) (01 = 8, +iq) (7.9) 

is a solution of the variational Equation (7.5), that is 

8H (coo, 0, 0; 8w,) = 8J, 

Returning to the variable 6, Equation (7.9) may be written 

(7.10) 

where 

80 = N (86) - C(J. (60 = 0 for a = 0) 

p = {-U3u.l’ (UE), a2u1 #)I 1 80 = a%8 + iu% 

(7.11) 

Going back to the equation H(w, a, y, @) = 0, let us write it thus 

H (00, 0, d) - H ((0, a, 7, p) = 0 (7.12) 

Adding 6H(oo, 0, 0, 

obtain 
z) to both sides of (7.12), where o = o,, + z, we 

8H(w,, 0, 0, z) = T( 2, 4 79 B) + P(a, 7, p) (7.13) 

where 

T (2, a, 7, P) = 6~((oo, 0, 0, 2) - H (wo + 2, a, 7, p) + H (wo, n, 7, p) 

P (a, 7, B) = H ( 00, 0, 0) - H (00, a, 7, B) (7.14) 

Lemma 7.2. Given t 1 > 0, there exist positive numbers 1, K, v, such 
that 

IIT(zl,a,7,B)-T(zz,a,7,B)I<elIIzl-z*U (7.15) 

forO\(a<l, 7 < 1, B<X<l, II 21 II < 2’7 II 22 II < 1‘ 

YP(a,-r,B)ll<e1 for O<n<l, 7<l, $<x<l (7.16) 

Proof: We have 

T(z~,a,7,B)-T(21,a,r,B)=6H(oo,O,O; 22-~1)--Ho(o,+21,n,~,~)-l- 

$-II(cl~o+z~,a,7,~)-=611(00,0,0;z2-z)-~611(oo+z~,a,7,~,z~--z~)-!- 
1 

-/- 1 (611( ’ 00 -I- Zlr a, 7, p; z2 - z1)--- EII (Qo -I- I1 + s (ZZ - Zl), a, 7, p; z2 ZI)) ds 

0 

‘lhe Lipschitz condition (7.15) is a consequence of the fact that, in 
view of Lemma 6.3, the function 6 H(oo, a, fl, y; 6 o) is uniformly con- 
tinuous in the variables o, n, p, y, 6 w, and is continuous in the vari- 

ables o, (I, /I, y. ‘Ihe assertion (7.16) also follows from Lenma 6.3. 
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Applying Lerwna 7.1 to (7,131, we see that it is equivalent to the 

equation 

2 = fiP(47, p) -I- fiT (r,n, 7, P) -qJ. (7.17) 

For a = y = 0, c = 0 we have the solution z = 0, Since, by Lenrna 7.1, 
N is a bounded linear functional, it follows that the right hand side of 

(7.173 satisfies a Lipschitz condition with respect to z with a Lipschitz 

constant which is small for small values of a andy. 'I&s, when a, y, 1 cl 
are small, Equation 

and its solution is 

(7.17) may be solved by the usual iteration method, 

We note that the 

tJJ(fi % 7,’ Br 4 = 00 + 2 (5 a, 7, p, c (7.18) 

same can be said in relation to z,', since z is con- 

tinuous with respect to c and has a continuous derivative with respect 

to c, as is easily seen. 

It remains to show t&at c may be chosen, in its dependence on a and y, 

such that 

ll(a, 7, C) = J&n, It, a, 7, P)ds = 0 
- 

However, since 

the function F(c) 

for y = 0 we have the problem of Friedrichs and Hyers, 

may be represented thus 

F(E) = a'Fo(w, a, 4 + 7F&, a, 7, p) 

Hence 

where 

l-l, (a, c) = us \ EF, (0, a, c) a, IT, (a, 7, 4 = \ U~(W, 6 7, B)dE (7.20) . 
--CO --Ds 

Since oC' = zC' exists and is continuous, (7.19) may be differentiated 

with respect to c. Consequently 

II,' = l&c) $- 7'rlLC' 

It may be shown that 

Il*:= aa+t EZ) (&a-*0 for a&O). 

Besides 
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--co 

Further, (7.11) implies that 

rc’ = a”cpr (E, a, 7, B), 0, = aaT, (E, a, r, p), PC’ = a% 

where $Q and +z are bounded functions, and v is a finite number. Thus 

l-L’ = a2 [A (4 7, p) -I- Es1 (Q-O, r-r0 for a+O) (7.20) 

Therefore 

b’ = a3 ($ + E2) + U2T (A (a; 7, p) + %I (7.21) 

Equation (7.21) imp1 ies that I$‘.(O, 0, 0,) = 0 and that I$ > 0 in the 
neighborhood of a = 0, y = 0, c = 0, provided that 1 y 1 < a. ‘Ihus, under 

these condi Cons on y , the bifurcation equation (7.19) may be uniquely 

solved for c. In view of this 

0 (E, 4 7, p, c) = @o (6, 4 4 + 2 (Es a* 7. ?* 4 (7.22) 

gives a solution of the problem satisfying the condition (7.1). 

From the nature of the solution of Equation (7.12) it follows that 

for small, but fixed, values of u the solution (7.22) tends, as y + 0, 
to a solitary wave solution. 

This concludes the proof of the theorem formulated at the end of 

Section 2, and our problem has been solved. 

In conclusion I wish to thank N.N. hloiseev for his help and advice. 
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